
container-solutions.com

What is the
Cloud Native
Maturity Matrix?

NO PROCESS

WATERFALL

AGILE

CLOUD NATIVE

NEXT

Culture

Product/Service
Design

Team

Process

Architecture

Maintenance

Delivery

Provisioning
Infrastructure

What is the Cloud Native Maturity Matrix?

Table of Contents

Introduction 2

Culture 8

Product/Service Design 11

Team 13

Process 15

Architecture 17

Maintenance 20

Delivery 23

Provisioning 27

Infrastructure 30

About Container Solutions 33

Want to Read More? 34

1

What is the Cloud Native Maturity Matrix?

Introduction

Even if you are getting an inkling of WTF Cloud Native is, you might still be unsure

about starting a journey toward it. Because Cloud Native is still new and

mysterious. And if you’re starting on a trip of any kind, it helps quell any anxieties

you may feel if you know the answers to two questions:

● How far is our destination?

● Are we there yet?

At the core, Cloud Native is a method for optimising systems for the cloud. It is an

approach to systems architecture that harnesses the cloud’s most powerful

advantages—flexible, on-demand infrastructure, and managed operational

services—using Continuous Delivery.1

But it’s a lot more than just some cutting-edge technologies that can make things

go faster. To work properly—and not be an expensive, time-wasting

boondoggle—Cloud Native tech needs to be accompanied by other changes.

Changes in your organisation’s culture, for instance. And in how you align IT and

business goals strategically.

Most enterprises consider a Cloud Native transformation because they want to

drastically speed up their ability to build, test, and deploy software, reducing that

time from months to days or even hours. Beyond sheer velocity, the ability to

continually deploy and update applications without ever disrupting users is the

1 Continuous Delivery automates the delivery of small, iterative changes to run on cloud-based infrastructure. It
provides an automated way to push code changes to teams working outside the production pipeline, performs
any necessary service calls to web servers or databases, and executes procedures when applications are
deployed.

2

https://www.container-solutions.com/wtf-is-cloud-native

What is the Cloud Native Maturity Matrix?

ultimate goal of a cloud transformation. Companies that can’t do this will quite

simply get left behind.

If their software is developed on a Waterfall or even Agile model, those companies2 3

will find that customer expectations have shifted by the time their application

finally deploys—moving them even further behind the competition. With Cloud

Native delivery processes, however, those companies can more easily keep pace

with rapidly shifting technology and customer demand.

Going Cloud Native is a complex process that few companies have deep experience

in navigating. The tech is new. There’s but a thin supply of engineers and

developers who are fluent in it. And the path to transformation is different for

nearly every organisation that sets out on the journey.

It makes sense that, in a young and quickly evolving sector, there were no maps to

steer by.

So we made one.

Container Solutions have been guiding companies onto the cloud for six years now,

carefully observing and analysing each experience. We took the lessons we learned

to develop the Cloud Native Maturity Matrix. It’s an assessment tool for helping

map the path between where an organisation currently finds itself—and where it

wants to be.

3 Software development principles focusing on iterative delivery, frequent user feedback, and
collaboration over complex processes. Scrum is the most well-known development method
integrating the Agile principles. For example, sprints in Scrum implement the Agile principle ‘deliver
working software frequently’.

2 A commonly used model of software development based on a logical progression of steps that
form the software development life cycle. One follows after the other in strict order, much as a
waterfall cascades down from top to bottom. This method is often associated with lengthy release
cycles.

3

https://info.container-solutions.com/microservices-for-managers

What is the Cloud Native Maturity Matrix?

The Cloud Native Maturity Matrix uses interviews, workshops, and an assessment

of the tech stack within an organisation to gather intel, which then is used to create

a snapshot of that company along nine different axes. Some are technically

oriented: infrastructure, maintenance and delivery. Others assess people-oriented

aspects: management process, team structure, and internal culture.

We use the gathered information to define, analyse, and describe an organisation’s

current status in each of the nine categories. That status is literally plotted out on

the matrix; at that point, the gap between the company’s current state and a Cloud

Native state is easy to see. This data—constantly re-assessed as things move

forward—allows us to make intelligent choices and monitor progress.

In other words, the Cloud Native Maturity Matrix lets us create a custom map for

each company’s unique path to the cloud.

4

What is the Cloud Native Maturity Matrix?

Diagram 1: A blank Cloud Native Maturity Matrix, showing all nine categories.

5

What is the Cloud Native Maturity Matrix?

Diagram 2: An example of a completed Cloud Native Maturity Matrix; the red area shows the gap between the
organisation’s current state in each category and Cloud Native status.

6

What is the Cloud Native Maturity Matrix?

This reference guide will help explain each category of the Cloud Native Maturity

Matrix, and what Cloud Native status means in each area. We’ll cover:

● Culture

● Product/Service design

● Team

● Process

● Architecture

● Maintenance

● Delivery

● Provisioning

● Infrastructure

7

What is the Cloud Native Maturity Matrix?

Culture

Your Culture describes the way individuals in your organisation interact with one

another.

No Process: Individualistic

In an individualistic organisation there is no approved way to interact with peers,

supervisors, or subordinates. Instead, communications are rooted in personal

preferences. The communications processes often change when the people in a

team change. This is a common situation for startups, but becomes chaotic and

unsustainable as you scale up.

Waterfall: Predictive

A predictive organisation embraces long-term planning and commits to deadlines.

The goal of a predictive business is to deliver what was agreed, on time. Often the

delivery will be large and complex. Delivering as fast as possible or exploring novel

new ideas are not priorities; in fact, exploring new ideas is often actively

discouraged.

In such an organisation you would expect to see large amounts of documentation;

procedures for changes, improvements, and daily tasks; segregation of teams by

specialisation; tools for every situation; and regular, lengthy planning meetings.

Delivering an agreed specification on time is a difficult endeavour. Predictive

companies need bureaucratic processes (for example, change control) and

specialised team responsibilities (specific functions and technologies). This means

8

What is the Cloud Native Maturity Matrix?

formal handovers between teams—for example, from development to test to

operations. It also requires modest cooperation within teams and between teams

coordinated by full-time project managers.

Predictive organisations tend to suppress novelty because it is essentially

unpredictable. They value rule following, encourage permission-seeking, and

punish deviation. All of these behaviours are logical, given the desire to deliver

complex systems exactly as specified.

This culture is common in medium to large enterprises.

Agile: Iterative

An Agile organisation has similarities to a predictive one, but it chooses smaller and

simpler goals, which it aims to deliver as fast as possible. Agile organisations tend

to focus on the short term rather than following a long-term plan. Communication

is often by short, daily meetings.

Culturally, Agile organisations prefer fast responses and quick fixes, which may lead

to a ‘hero culture’ where individuals regularly display superhuman efforts to keep

everything on track. They commonly use the Scrum project management

methodology, with individual teams responsible for their part of the backlog.

Inter-team communication is by Scrum masters and other coordinators. They

typically have high cooperation within teams but modest cooperation between

teams. Risks are usually shared within teams, but not between them. Like in a

predictive organisation, Agile organisations normally have narrow responsibilities

within a team, and narrow responsibilities for a team.

This culture is common throughout startups and enterprises of all sizes.

Cloud Native: Collaborative

9

What is the Cloud Native Maturity Matrix?

A collaborative organisation tends to have big goals, but less specific ones than a

predictive organisation. For instance, there may be a broad vision but without a

detailed specification or a fixed delivery date. This culture embraces learning and

consistent, continuous improvement over predictability.

Typically, this culture involves teams with full responsibility for their services, tools,

and processes during the entire lifecycle—from design to deployment. High levels

of collaboration exist within teams and between teams. There is often constant

communication, using team chat tools like Slack. This culture rewards

self-education, experimentation, and research. Results are coldly assessed based

on field data.

A collaborative culture is increasingly being adopted in companies operating in

areas of high uncertainty or fast change.

Next: Experimental

We predict the next type of organisation will be an experimental one. In an

experimental culture, people within an organisation are encouraged to try new

ideas on a small scale, learn from their failures, and scale up their successes.

10

What is the Cloud Native Maturity Matrix?

Product/Service Design

The Design category describes how decisions are made within your organisation

about what product work to do next. What decides which products to develop, or

which improvements or new features are tackled next?

No Process: Arbitrary

An arbitrary design process is fad/wild-idea driven, somewhat random, and not

deeply discussed. It is a common way to operate in startups where ideas usually

come from the founders. On the upside, it can be highly creative. On the downside,

it may result in partial features or an incoherent product.

Waterfall: Long-term plan

A long-term plan driven design process focuses on collating and assessing

product-feature requests by customers, potential customers (via sales), users, or

product managers. Individual features are then turned into team projects and

multiple features are combined into large releases that happen every six to 12

months. This process is a common one for larger enterprises.

Agile: Feature-driven

A feature-driven design process speeds things up by allowing small new features to

be selected with less planning. The aim is that these more modest features will be

delivered to clients every few weeks or months in small batches. A feature-driven

organisation focuses on fast change, often without an overarching long-term plan.

11

What is the Cloud Native Maturity Matrix?

Cloud Native: Data-driven

In a data-driven design process, the final say on which features stay in a product is

based on data collected from real users. Potential new features are chosen based

on client requests or designs by product owners without a long selection process.

They are rapidly prototyped and then potentially developed and delivered to users

with copious monitoring and instrumentation. They are assessed against the

previous features (better or worse?) based on A/B or multivariate testing. If the new

feature performs better it stays; if worse, it is switched off or improved.

Next: Artificial Intelligence-driven

In the future, humans will be cut out of this process entirely! AI-driven systems will

make evolutionary tweaks and test themselves with little developer interaction.

12

What is the Cloud Native Maturity Matrix?

Team

The Team axis describes how responsibilities, communication and collaboration

works across teams in your organisation.

No Process: No organisation, single contributor

Here we find little structure, typically one or possibly a few independent

contributors with no consistent management. This is most commonly found in

small startups.

Waterfall: Hierarchy

A hierarchy organisation is organised via ranked positions within and between the

teams. Decisions are made by managers and implementation is done by specialised

teams (making it difficult to move individuals between teams). There will be

separate teams of architects, designers, developers, testers, and operations

engineers. Inter-team communication is generally through tools like Jira or via

managers. Historically, this has been the most common structure in large

organisations.

Agile: Cross-functional teams

In a cross-functional organisation there is less specialisation by teams, and more

cross-capability within teams. For example, development teams will often include

testing and planning capabilities. Scrum masters, product owners, etc. facilitate

13

What is the Cloud Native Maturity Matrix?

communication between teams. However, a hierarchy remains outside (rather than

within) teams.

Cloud Native: DevOps/SRE

A DevOps team is a development team capable of designing and building

applications as part of a distributed system, and also operating the production

platform/tools. Each team has full responsibility for delivering microservices and4

supporting them. DevOps teams include planning, architecture, testing, dev, and

operational capabilities.

However, often there’s some separation of tasks. For example, it is common to see

a platform DevOps team in charge of building the Cloud Native platform, while Site

Reliability Engineers (SRE) or 1st level support teams respond to alerts. However,

there is considerable collaboration between those teams and individuals can easily

move between them.

Next: Internal supply chains

In an internal supply chain organisation each service is a separate product, with full

tech and business generation responsibilities in the teams—much as many

e-commerce teams have been managed for a decade.

4 An approach to application development in which a large application is built as a suite of modular
components or services. Each service runs a unique process and usually manages its own database.
A service can generate alerts, log data, support UIs and authentication, and perform various other
tasks. Because microservices enable each component to be isolated, rebuilt, redeployed, and
managed independently, development teams can take a more decentralized (nonhierarchical)
approach to building software.

14

https://blog.container-solutions.com/what-sre-is-and-how-it-helps-you-keep-innovating
https://blog.container-solutions.com/what-sre-is-and-how-it-helps-you-keep-innovating

What is the Cloud Native Maturity Matrix?

Process

Process describes how your organisation executes its work.

No Process: Random

In a random organisation, there is no change-management process, just random

changes made at will. There is often no consistent versioning. This is common in

many small companies with only a couple of engineers.

Waterfall: Waterfall

In a Waterfall organisation, the product-development process is tightly controlled

through up-front planning and change-management processes. A sequential

process is followed by planning, execution, testing, and finally delivery. There is

usually an integration stage before delivery, where work from different streams is

combined.

The process is run by managers and any and every handover is well documented

and requires forms and procedures.

Agile: Agile (Scrum/Kanban)

In an Agile organisation, product development is run in sprints using an Agile

technique such as Scrum or Kanban. Documentation is limited (the product is the

documentation) and teams are heavily involved in their own management through

daily consultation. There is usually considerable pressure to deliver fast, and no

15

What is the Cloud Native Maturity Matrix?

defined provision for experiments or research. Only limited changes, if any, are

allowed during sprints to protect the delivery deadlines.

Cloud Native: Design Thinking + Agile + Lean

In a Design Thinking organisation, Design Thinking and other research and

experimentation techniques are used for de-risking large and complex projects.

Many proofs of concept (PoCs), or small experiments, are developed to compare

options. Kanban is often then used to clarify the project further; finally, Scrum is

used once the project is well understood by the entire team.

This relatively new process can be used in situations of high uncertainty or where

the technology is changing rapidly.

Next: Distributed, self-organised

In the future, self-organised systems will be highly experimental, with less up- front

design. Individuals or small teams will generate ideas that are iterated and

improved on in the field automatically by the platform.

16

What is the Cloud Native Maturity Matrix?

Architecture

Architecture describes the overall structure of your technology system.

No Process: Emerging from trial and error

In an architecture described as emerging from trial and error, there are no clear

architectural principles or practices. Developers just write code independently and

all system-level communication is ad hoc. Integrations between components tend

to be poorly documented, unclear, and hard to extend and maintain.

Waterfall: Tightly coupled monolith

A tightly coupled monolith is an architectural model where the entire codebase is

built as one to five modules, with many developers working on the same

components. A layered architecture (database, business logic, presentation, etc.) is

common. Although interfaces have been defined, changes in one part often require

changes in other parts because, typically, the code is divided into components with

very strong coupling.

Delivery is done in a coordinated way, all together. Typically, the monolith is written

in a single programming language with strong standardisation on tooling. The

application is usually vertically scalable (you can support more users by adding

more resources on a single server).

The design and maintenance of the monolith is usually led by a system architect or

her team—many of whom are not hands-on developers. Unfortunately, there are

17

What is the Cloud Native Maturity Matrix?

few developers or architects who can hold the entire system in their heads. Most

people don’t understand the full complexity of the app and that the impact of a

single bug may be unpredictable and create domino effects that can destabilise the

system overall.

Agile: Client server

A client server architecture is the most basic form of distributed system. It is

designed to handle a system of multiple components communicating through

networks that might be slow or unreliable. Each component is often similar to a

monolith with a layered architecture. Each service can be clustered (which enables

targeted horizontal scaling and resilience).

Like a monolith, in a client-server architecture multiple teams work on services at

once and all services need to be deployed together. However, because the

network-induced separation provides a degree of decoupling, the system is usually

possible to develop while working in parallel to some degree (one group handles

the client part, one the server).

Cloud Native: Microservices

A microservices architecture is highly distributed. It comprises a large number

(usually more than 10) of independent services that communicate only via

well-defined, versioned APIs. Often, each microservice is developed and maintained

by one team. Each microservice can be deployed independently and each has a

separate code repository. Hence, each microservice team can work and deploy in a

highly parallel fashion, using their own preferred languages and operational tools

and datastores (such as databases or queues).

Operationally, it is common to manage microservice deployment in a fully

automated way. Because the system is distributed and components are decoupled

18

What is the Cloud Native Maturity Matrix?

not only from each other but from other copies of themselves, is it easy to scale the

system up by deploying more copies of each service.

Next: Functions

A functions (aka serverless) architecture is one where no infrastructure needs to be

provisioned. Each piece of business logic is in a separate function, which is

operated by a fully managed Function-as-a-Service, such as AWS’s Lambda,

Microsoft’s Azure Functions, or Google’s Cloud Functions.

No operations tasks—such as up-front provisioning, scaling or patching—are

required. There is a pay-as-you-go/pay-per-invocation model.

19

What is the Cloud Native Maturity Matrix?

Maintenance

The Maintenance category describes how software is deployed and then run in a

production environment in your organisation.

No Process: Respond to users’ complaints

A response to users’ complaints process is one in which the development and

operations teams are alerted to most problems only when users encounter them.

There is insufficient monitoring to flag issues in advance and allow engineers to fix

them before the majority of users encounter them. System downtime may only be

discovered by clients, or randomly. There is no alerting.

For diagnosing issues, administrators usually need to login to servers and view each

tool/app log separately. As a result, multiple individuals need security access to

production. When fixes to systems are applied, a manual upgrade procedure is

followed.

This is a common situation in startups or small enterprises but it has significant

security, reliability, and resilience issues, as well as single points of failure (often

individual engineers).

Waterfall: Ad-hoc monitoring

An ad-hoc monitoring process consists of partial monitoring of system

infrastructure and apps. This includes constant monitoring and alerting on basic,

fundamental downtime events such as the main server becoming unresponsive.

20

What is the Cloud Native Maturity Matrix?

Live problems are generally handled by the operations team and only they have

access to production. Still, there’s usually no central access to logs and engineers

must login to individual servers for diagnosis, maintenance operations, and

troubleshooting. Update processes may still be manual but formal runbooks

(documentation) and checklists exist for performing update procedures.

This is a very common situation in enterprises. It still has security, reliability, and

resilience issues.

Agile: Alerting

An alerting process involves pre-configured alerts on a variety of live system events.

There is typically some log collection in a central location but most of the logs are

located in separate places.

Operations teams normally respond to these alerts. Operations will escalate to

Developers if they can’t resolve the issue. Operations engineers still need to be able

to login to individual servers. Update processes, however, may be partially or fully

scripted.

Cloud Native: Full observability and self healing

In full observability and self healing, the system is highly monitored. Many issue

responses happen automatically; for example, system health checks may trigger

automatic restarts if failure is detected. Alternatively, the system may gradually

degrade its own service to keep itself alive if, for example, resource shortages such

as low disk space are detected. Status dashboards are often accessible to everyone

in the organisation so that they can check the availability of the services.

Operations (sometimes called ‘platform’) engineers respond to infrastructure and

platform issues that are not handled automatically. Live application issues are

handled by Development teams or SRE teams.

21

https://containersolutions.github.io/runbooks/?utm_source=wp_im&utm_medium=wp&utm_campaign=runbooks

What is the Cloud Native Maturity Matrix?

Logs are all collected in a single place. This often includes distributed tracing

output. Operations engineers, developers, and SREs all have access to the logging

location. They no longer have (or need) security access to production servers.

All update processes are fully automated and do not require access by individual

engineers to individual servers.

Next: Preventative machine learning, artificial intelligence

In the next generation of systems, machine learning and artificial intelligence will

handle operational and maintenance processes. Systems learn on their own how to

prevent failures by, for instance, automatically scaling up capacity.

Humans are defining the starting point for machines to learn and constantly

improve. Self healing is the optimal way for systems to be operated and

maintained. It is faster, more secure, and more reliable.

22

What is the Cloud Native Maturity Matrix?

Delivery

The Delivery process describes how and when software from your development

teams gets to run in your live (production) environment.

No Process: Irregular Releases

In many small organisations, irregular software releases (new functions or fixes) are

delivered into production at random times based on IT or management decisions

about the urgency of the change. For highly urgent issues, like fixes for production

problems, changes are delivered by developers directly to production ASAP.

This is a common situation for startups and small enterprises.

Waterfall: Periodic releases

Many organisations have periodic scheduled releases—for example, every six

months. The contents of these, usually infrequent, releases becomes extremely

important and are the result of long planning sessions. Extensive architectural

documents for each release are produced by enterprise architects and requirement

documents by business analysts. No coding is done before the full architecture is

ready. Once the release contents are agreed, any change is subject to a Change

Approval Board. A key driver behind infrequent releases is the need to perform

expensive manual testing of each release prior to deployment.

Highly sequential processes are followed for each release:

23

What is the Cloud Native Maturity Matrix?

1. System and software requirements are captured in a product requirements

document.

2. Analysis is performed, resulting in documented models, schema, and

business rules.

3. Design of the software architecture is completed and documented.

4. Coding is done: the development, proving, and integration of software (i.e.

merging the work done by different teams).

5. Testing of that integrated new code is performed, including manual tests.

6. The installation and migration of the software is completed by the

operations team.

After the release, the Operations teams support and maintain the complete system.

Agile: Continuous Integration

Continuous Integration describes an organisation that ensures new functionality is

ready to be released at will—without needing to follow a strict release schedule

(although a formal release schedule may still be followed). It often results in more

frequent releases of new code to production.

A tech organisation using Continuous Integration typically:

● Has a single codebase (aka a source repository) that all developers add

their code to. This ensures that merging and integration happen constantly

rather than occasionally. That tends to make merging much easier.

● Has a fully automated build process that turns new code into runnable

applications.

24

What is the Cloud Native Maturity Matrix?

● As part of the build, includes automated testing of all code. That forces

developers to fix bugs as they go along, which is easier than fixing them

late in the process.

● Requires developers to add their new code to the single repository every

day, which forces them to merge and fix bugs incrementally as they go

along.

● Has a way to deploy code to test or production hardware in an automated

fashion.

Cloud Native: Continuous Delivery

Continuous Delivery describes an organisation that ensures new functionality is

released to production at high frequency (often several times per day). That does

not mean the new functionality is exposed to all users immediately. It might be

temporarily hidden or reserved for a subset of experimental or preview users.

A tech organisation using Continuous Delivery typically:

● Has a so-called ‘deployment pipeline’ where new code from developers is

automatically moved through build and test phases.

● New code is accepted (or rejected) for deployment automatically.

● Thorough testing of functionality, integration, load, and performance

happens automatically.

● Once a developer has put their code into the pipeline, they cannot manually

change it.

● Individual engineers do not have permission to change the production (live)

servers.

Companies using Continuous Delivery usually display continuous systems

improvements. They also run tests on their production systems using methods

such as chaos engineering (a way of forcing outages to occur on production

25

https://blog.container-solutions.com/istio-and-kubernetes-reducing-risk-through-chaos-engineering

What is the Cloud Native Maturity Matrix?

systems to ensure those systems recover automatically) or live testing for subsets

of users (A/B testing).

Next: Continuous Deployment

The next evolution of delivery is Continuous Deployment. In an organisation using

this process, we see fully automatic deployment to production with no approval

process—just a continuous flow of changes to customers. The system will

automatically roll back (uninstall new changes) if certain key metrics—such as, say,

user conversion—take a hit.

26

What is the Cloud Native Maturity Matrix?

Provisioning

The Provisioning process describes how you create or update your systems in your

live production environment.

No Process: Manual

In a manual system, a developer (who is also your operations engineer) logs in to a

server and starts apps manually or with rudimentary scripting. Servers are accessed

using primitive file transfer mechanisms like FTP.

This is a common situation in startups. It is slow, labour-intensive, insecure, and

doesn’t scale.

Waterfall: Scripted

In a scripted system, developers build an app and hand it over to the Operations

team to deploy it. The Ops team will have a scripted mechanism for copying the

application and all its dependencies onto a machine to run. They will also have a

scripted mechanism for configuring that machine or they may have pre-configured

virtual machines (VMs).

In this case, because the Development team ‘throws their app over the wall’ to

Operations, there is a risk that the developers built and tested their app using

different tools, versions, or environments to those used by the Ops team. This can

cause an application that worked fine for the Dev team to fail to work when

Operations puts it on its test or live servers. This introduces confusion when issues

27

What is the Cloud Native Maturity Matrix?

are subsequently seen: is there a bug in the app delivered by Dev or is it an issue in

the production environment?

Agile: Configuration Management (Puppet/Chef/Ansible)

In a system with Configuration Management, applications are developed to run on

specific hardware or virtual machines. Commercially available or open source

configuration tools like Puppet, Chef, or Ansible allow operations engineers to

create standardised scripts, which are run to ensure a production system is

configured exactly as required for the application provided by Development. This

can be done at will (in other words, fast) but there is limited automation (mostly a

human presses a button to run the scripts).

Developers often deploy on their local test environments with different, simpler

tooling. Therefore, mismatches can still occur between developer environments

and production ones, which may cause issues with the live system. However, this is

less common and faster to resolve than with more ad-hoc scripting.

Cloud Native: Orchestration (Kubernetes)

In a system with Orchestration, applications in production are managed by a

combination of containerisation (a type of packaging that guarantees applications

are delivered from development with all their local operational dependencies

included) and a commercially available or open-source orchestrator such as

Kubernetes.

The risk of a mismatch between development and live environments is reduced or

eliminated by delivering applications from Dev to Ops in containers along with the

app’s dependencies. The Ops team then configures Kubernetes to support the new

application by describing the final system they want to produce in production. This

is called declarative configuration.

28

https://blog.container-solutions.com/wtf-is-kubernetes
https://blog.container-solutions.com/wtf-are-containers

What is the Cloud Native Maturity Matrix?

The resulting system is highly resilient, automated, and abstracted. Neither

engineers nor the apps themselves need to be aware of hardware specifics.

Everything is automatic. Detailed decision making about where and when

applications will be deployed is made by the orchestrator itself, not a human.

Next: Serverless

It is now becoming more common for companies to be serverless—to give up Ops

or even DevOps and allow all hardware maintenance and configuration to be done

in a fully automated way by what is usually a cloud platform.

Code is packaged by developers, submitted to the serverless service, and can

potentially be distributed and executed on many different platforms. The same

function can run for testing or live. Inputs, outputs, and dependencies are tightly

specified and standardised.

29

What is the Cloud Native Maturity Matrix?

Infrastructure

Infrastructure describes the physical servers or instances that your production

environment consists of: what they are, where they are, and how they are

managed.

No Process: Single server

In a single server environment you run all of production on a single physical

machine. This may be an old desktop sitting under a desk in the office. You have no

failover servers (resilience) and you deploy to your server using copy-and-paste file

transfers. You probably have some rudimentary documents to describe the setup.

Waterfall: Multiple servers

A multiple servers (physical) infrastructure will handle a moderately complex

application. You may have some redundancy (if one machine fails, another will take

over) and you can have a sophisticated system of multiple interacting

applications—for example, front ends and a clustered database. This is probably all

sitting in a simple, co-located data centre.

Your Operations team may use manual problem solving and it might take days or

weeks to provision new infrastructure because it’s hard to get more rackspace!

Compute, storage, networking, and security are usually managed separately and

require separate requests to Ops. New infrastructure is ordered through a ticketing

system and provisioned by Ops.

30

What is the Cloud Native Maturity Matrix?

Agile: Virtual machines (pets)

A virtual machines (pets) based environment is similar to a multiple servers

environment in that you have a set of machines and manual server setup. However,

this is made easier by using standardised virtual machine images. You use

virtualisation software, such as VMWare, to help manage your virtual machine

instances. You get better resource utilisation (and therefore an effectively larger

system for your money) by running multiple VM instances on each physical server.

Your operations team uses manual or semi-automated provisioning of new

infrastructure resources. Your VMs are ‘mutable’ —meaning, engineers can log on

to them and change them by, for example, installing new software or fixes. Each

machine is maintained separately and it would be painful if one died (hence, ‘pets’).

It will generally take hours or days to provision new infrastructure, mainly due to

handovers between Dev and Ops teams.

Cloud Native: Containers/Hybrid cloud (cattle)

In a containers/hybrid cloud (cattle) environment, individual machines don’t matter.

Ops or DevOps don’t directly provision infrastructure resources like VMs, they are

only accessed through automated processes exposed through APIs.

It takes minutes or seconds to provision new infrastructure, always through APIs.

Containers are often used for application packaging, which makes it easier to run

those applications on multiple different ‘hybrid’ cloud environments (on prem or

public). There is usually full automation of environment creation and maintenance.

Under normal conditions, your engineers have no manual access to physical

infrastructure. If any piece of infrastructure fails you don’t care—it can easily be

recreated (hence, ‘cattle’).

Next: Edge computing

31

What is the Cloud Native Maturity Matrix?

The next evolution for infrastructure is edge computing. Compute loads are run on

edge devices—i.e. outside of your normal data centre. Edge computing returns

results fast and works well where, for example, enough data is available locally and

network connections to central data centre locations may be unreliable.

32

What is the Cloud Native Maturity Matrix?

About Container Solutions

Container Solutions is a professional services firm that specialises in Cloud Native

computing.

Our company prides itself on helping enterprises migrate to Cloud Native in a way

that is sustainable, integrated with business needs, and ready to scale. Our proven,

four-part method, known as Think Design Build Run, helps companies increase

independence, take control, and reduce risk throughout a Cloud Native

transformation.

The process is stepwise to minimise risk, but delivers value quickly. In our Think

phase, we listen carefully to people throughout a company, from the boardroom on

down, to alleviate challenges and pain points, and formulate strategy. In the Design

phase, we conduct small experiments to eliminate wrong choices and help

organisations select the best path forward, regardless of vendor. In the Build phase,

we collaborate with our clients’ engineers to create a Cloud Native system aimed at

delivering software faster and easier. In the Run phase, we train our customers’

engineers to maintain their new system themselves—though we also offer partial

or full, 24/7 operations support if they prefer.

Container Solutions is one of only a handful of companies in the world that are

both part of the Kubernetes Training Partner (KTP) programme and a Kubernetes

Certified Service Provider (KCSP). Membership to both programmes is based on

real-life, customer experience. When companies like Google, Atos, Shell, and Adidas

need help with Cloud Native, they turn to Container Solutions. We are a remote-first

company that operates globally, with offices in the Netherlands, the United

Kingdom, Germany, and Canada.

33

https://www.container-solutions.com/think-design-build-run

What is the Cloud Native Maturity Matrix?

Want to Read More?
Check out these Container Solutions publications:

The Resilient Company: Cloud Native Patterns to

Help Navigate a Crisis
by Pini Reznik

A Pattern Language for Strategy
by Jamie Dobson and Pini Reznik

WTF are Microservices for Managers?
by Riccardo Cefala

34

mailto:pini.reznik@container-solutions.com
mailto:riccardo.cefala@container-solutions.com
https://info.container-solutions.com/cloud-native-crisis-management
https://info.container-solutions.com/cloud-native-crisis-management
https://info.container-solutions.com/a-pattern-language-for-strategy-ebook
https://info.container-solutions.com/microservices-for-managers

