
THE CLOUD NATIVE
MATURITY MATRIX

Container
Solutions

Questionnaire

container-solutions.com

2

INTRODUCTION

Cloud Native is a method for optimising systems for the cloud. It harnesses the
cloud’s most powerful advantages—flexible, on-demand infrastructure and
managed operational services—and pairs them with continuous delivery, containers,
microservices, and other cloud-optimised technologies. When done right, it allows
you to drastically speed up building, testing, and deploying software—and doing so
easily and often without ever disrupting user experience.

Migrating an organisation’s existing systems onto the cloud is a complex process,
not to be undertaken in haste. Some companies believe they can simply ‘lift and
shift’ their current operations onto the cloud. They quickly find out, however, that
this is not true. A successful cloud migration requires a complete transformation
of an organisation’s technology as well as human-centred aspects like culture and
leadership. Cloud Native is very new, and few companies have deep experience in
navigating the architecture’s complexities.

A sample Maturity Matrix outcome graph from a real-world enterprise assessment. It shows both the
company’s current status and the progression points necessary for transforming to Cloud Native.

THE MATURITY MATRIX

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

CULTURE

PROD/SERVICE
DESIGN

TEAM

PROCESS

ARCHITECTURE

MAINTENANCE

DELIVERY

PROVISIONING

INFRASTRUCTURE

Individualist

Arbitrary

Random

Emerging from
trial and error

No organisation,
single contributor

Predictive

Long-term plan

Hierarchy

Waterfall

Tightly coupled
monolith

Iterative

Feature driven

Cross-functional
teams

Agile
(Scrum/Kanban)

Client server

Collaborative

Data driven

DevOps / SRE

Design Thinking +
Agile + Lean

Microservices

Experimental

All driven

Internal supply
chains

Distributed,
self-organised

Functions

Respond to
users complaints

Irregular
releases

Manual

Ad-hoc
monitoring

Periodic
releases

Scripted

Alerting

Continuous
Integration

Config. management
(Puppet/Chef/Ansible)

Full observability &
self-healing

Continuous
Delivery

Orchestration
(Kubernetes)

Preventive ML,
AI

Continuous
Deployment

Serverless

Single server Multiple servers VMs (pets)
Containers/

hybrid cloud (cattle) Edge computing

container-solutions.com

3

Through the past five years spent guiding companies onto the cloud, Container
Solutions have been carefully observing and analysing each experience. From
these lessons we developed Container Solutions Cloud Native Maturity Matrix, an
assessment tool for mapping an effective transformation path. The Maturity Matrix
investigates nine different areas of transformation. Some are technically oriented,
others assess cultural aspects of your company. We use the gathered information
to define, analyse and describe your current organisational status—and then create
your own custom roadmap for an effective cloud migration.

This questionnaire will guide you through a Maturity Matrix self-assessment. This
is a lighter weight version of the same tool CS engineers use when performing our
in-depth Cloud Native Readiness Assessment, a multi-day dive into a company’s
current systems, processes, and culture. This basic version provides an insightful
snapshot of where you are right now, so we can map the fastest—and lowest risk—
flight path for your company’s unique Cloud Native transformation.

If any of the concepts you encounter are unfamiliar or confusing, please refer to the
Glossary of Cloud Native Terms at the back of this booklet.

container-solutions.com

4

INSTRUCTIONS

How do we assess current organisational status?

First, you will answer a series of questions designed to reveal your company’s current
practices, from Culture to Process to Infrastructure. We describe each of these
areas and then ask you to choose the statement(s) that are reasonably true for your
organisation. Mark your selections on the specific matrix section provided on each
page. If an ‘X into Y’ result is indicated, fill in halfway between the two.

Next, copy your answers from the individual axes onto the full blank matrix. (A
blank Maturity Matrix is provided on page 16). We use the answers to draw a point
on each of the nine separate axes, and then literally connect the dots by drawing a
line through each status point. Graphing status in this way gives instant valuable
feedback, and provides a powerful visual of your company’s current state.

We will then use this insight to match your results to typical scenarios that we have
observed at other enterprises seeking to migrate their legacy systems and transform
into a true Cloud Native entity.

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

CULTURE

PROD/SERVICE

Individualist Predictive Iterative Collaborative Experimental

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

CULTURE

PROD/SERVICE
DESIGN

TEAM

PROCESS

ARCHITECTURE

MAINTENANCE

DELIVERY

PROVISIONING

INFRASTRUCTURE

Individualist

Arbitrary

Random

Emerging from
trial and error

No organisation,
single contributor

Predictive

Long-term plan

Hierarchy

Waterfall

Tightly coupled
monolith

Iterative

Feature driven

Cross-functional
teams

Agile
(Scrum/Kanban)

Client server

Collaborative

Data driven

DevOps / SRE

Design Thinking +
Agile + Lean

Microservices

Experimental

All driven

Internal supply
chains

Distributed,
self-organised

Functions

Respond to
users complaints

Irregular
releases

Manual

Ad-hoc
monitoring

Periodic
releases

Scripted

Alerting

Continuous
Integration

Config. management
(Puppet/Chef/Ansible)

Full observability &
self-healing

Continuous
Delivery

Orchestration
(Kubernetes)

Preventive ML,
AI

Continuous
Deployment

Serverless

Single server Multiple servers VMs (pets)
Containers/

hybrid cloud (cattle) Edge computing

INDIVIDUAL AXIS
QUESTIONS

Cloud Native Maturity Matrix Questionnaire
Part 1:

container-solutions.com

6

How individuals in your organisation interact, communicate, and work with
each other.

In our company …

1. We decide what to do, and how to do it, on a project by project basis.

(No Process/Individualist)

2. We build by deciding (for example) ‘This feature in January and this in May and

this in August’ and then expect to see exactly those features on that schedule.

(Waterfall/Predictive)

3. We have frequent meetings on a regularly scheduled basis.

(Waterfall/Predictive into Agile/Iterative)

4. In our company, each team has clearly defined responsibilities. When a task

is completed, it gets handed off to the next team in the production pipeline.

(Agile/Iterative)

5. Our development teams focus on achieving small, defined objectives quickly.

(Agile/Iterative into CN/Collaborative)

6. We have broad, high-level goals but are trusted to figure out the best way to

implement them. (CN/Collaborative)

7. Failure is an option, so long as you learn from it.

(CN/Collaborative into Generative)

8. Every team is empowered to choose, purchase, and implement the specific

tech tools/services they need to independently develop and deploy

applications/features/services. (Generative)

1. CULTURE

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

CULTURE

PROD/SERVICE

Individualist Predictive Iterative Collaborative Experimental

container-solutions.com

7

What you do, and how you go about doing it. How do decisions get made in your
organisation about new products to build, or services and features to offer—or
how to improve existing ones?

In our company …

1. We release whenever the product is ready to ship. (No Process/Arbitrary)

2. Our CEO/board decides what is to be done and then passes it down to

everyone else for execution. (No Process/Arbitrary into Waterfall/Long-term plan)

3. We have product roadmaps spanning months or even years into the future.

(Waterfall/Long-term plan)

4. We release large sets of related features all at once as comprehensive

updates. (Waterfall/Long-term plan)

5. Our feature releases are regular—for example, “Do X in two months, Y in four

months and Z in six months”—with no deviation. (Agile/Feature driven)

6. If New Feature Z is scheduled to arrive six months from now but customers

are asking for it sooner, we can possibly do that. (Agile/Feature driven into

CN/Data driven)

7. When we deliver, we monitor to see if the release is a genuine improvement

over the previous feature/service. (CN/Data driven)

8. Our systems and tech are automated to optimise our existing

products/services. (Next/AI driven)

2. PRODUCT/SERVICE DESIGN

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

PROD/SERVICE
DESIGN Arbitrary

No organisation,

Long-term plan Feature driven

Cross-functional

Data driven All driven

Internal supply

container-solutions.com

8

How do responsibilities, communication, and collaboration work between
teams in your organisation?

In our company …

1. We have one tech team, and they handle everything. (No Process/Single

Contributor)

2. We do all our planning up front, and then hand off to teams—often highly

specialised—for execution. (Waterfall)

3. A team will work on one small, defined project and deliver it in two to four

weeks. (Agile/Scrum)

4. When our piece of a project is finished, we hand it off to Operations for

deployment. (Agile/Cross-functional teams)

5. Our teams are cross-functional—we have a designer, a UI expert, testing,

someone with server experience, all in one group. (Agile/Cross-functional

teams)

6. Our teams are meant to be self-sufficient and independent. We are tightly

knit internally, but we don’t talk to other teams very much. (Agile/Cross-

functional)

7. Our developers build and then deploy independently, with no handover to a

separate Ops department. (CN/DevOps SRE)

8. Our teams can communicate via APIs on a public cloud. (CN/DevOps SRE into

Next/Internal Supply Chains)

9. We are not a small company, but we don’t actually have tech teams.

(Next/Internal Supply Chain)

3. TEAM

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

TEAM
No organisation,

single contributor Hierarchy
Cross-functional

teams DevOps / SRE
Internal supply

chains

container-solutions.com

9

How do you plan and then execute work?

In our company …

1. We change things on the fly, as necessary. (No Process/Random)

2. All decisions are made by managers. (Waterfall/Hierarchy)

3. When our piece of a project is finished, we hand it off to the next team.

(Waterfall/Hierarchy)

4. It’s difficult to give feedback to anyone outside my team. (Waterfall/

Hierarchy to Agile/Scrum)

5. We run development as short-term, concentrated projects. (Agile/Scrum)

6. We focus on moving fast, so it’s hard to do more than quick fixes when a bug

or some other problem pops up. (Agile/Scrum)

7. Experimentation is encouraged, and we actually have time to do it. (CN)

8. We use different processes at different stages of product development as

needed. (CN/Design Thinking into Next/Internal Supply Chain)

9. Our development process is fully automated so we have really small dev

teams, if we have them at all. (Next/Self-organised)

4. PROCESS

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

PROCESS Random

Emerging from

Waterfall

Tightly coupled

Agile
(Scrum/Kanban)

Design Thinking +
Agile + Lean

Distributed,
self-organised

container-solutions.com

10

What is the overall structure of your technology and systems?

In our company …

1. No one really knows the structure, we just build/buy what we need when we

need it. (No Process/Trial and Error)

2. We fear the domino effect: if you change something, you have to be very very

careful because it could break something else. (Waterfall/Monolith)

3. Very few people actually understand our entire system. (Waterfall/Monolith)

4. When we deliver, everything is delivered together, all ready on the same day

and at a uniformly high level of quality. (Waterfall/Monolith)

5. Our application(s) is(are) divided into components, probably no more than

five or six, communicating through networking. (Agile/Client server)

6. The size of an app in development is defined by the deployment schedule.

(Agile)

7. Our applications share a single database. (Agile)

8. Our applications don’t share databases. (Cloud Native/Microservices)

9. Our applications are broken into many small modular pieces, which

communicate through APIs (Cloud Native/Microservices)

10. Our entire system is serverless and running on a fully managed cloud

platform—our developers just write small functions. (Next/Functions

architecture)

5. ARCHITECTURE

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

ARCHITECTURE
Emerging from
trial and error

Tightly coupled
monolith Client server Microservices Functions

Respond to Ad-hoc Full observability & Preventive ML,

container-solutions.com

11

How does your organisation deploy software and run it in production?

In our company …

1. We only hear about problems, outages, or failures when users complain. (No

process/Complaint driven)

2. We have some simple automation, like scripts, for alerting large-scale issue

and outages in the field. We find out about smaller problems from user

reports. (Waterfall/Ad hoc).

3. When we find a problem, we fix it manually—someone from Operations logs

into a production server and follows a preset procedure. (Waterfall/Ad hoc)

4. Our systems have full and continuous monitoring, and our Ops team spends

lots of time checking on alerts. (Agile/Alerting)

5. When an exception gets thrown in our containerised application, by the

time we log in to see what happened there is no trace of the problem. (Agile/

Alerting)

6. Ops has security access to production servers because sometimes they need

to view information on a certain machine. (Agile/Alerting)

7. If a server crashes, our system has the ability to detect this and restart it.

(CN/Full observability and Self-healing)

8. We have a dashboard/UI where anyone in the organisation can see a full

overview of system status at any time. (CN/Full observability)

9. Our system is able to monitor itself automatically, detect all issues, and fix

itself when things go wrong. (Next/Machine Learning/AI)

6. MAINTENANCE AND OPERATIONS

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

MAINTENANCE
Respond to

users complaints

Irregular

Ad-hoc
monitoring

Periodic

Alerting

Continuous

Full observability &
self-healing

Continuous

Preventive ML,
AI

Continuous

container-solutions.com

12

How does software progress from your development teams to running live in
production?

In our company …

1. We deliver software whenever a new release/version is needed/ready.

(No Process/Irregular releases)

2. We do major version releases, very carefully planned and scheduled, every six

to 12 months. (Waterfall/Periodic releases)

3. We don’t like to make changes to our production code, even emergency ones,

because there are so many dependencies. Change is risky.

(Waterfall/Periodic)

4. A lot of planning goes into our next release before any actual development

begins. (Waterfall/Periodic releases)

5. Our delivery process includes some test automation and automated build,

but outside of final integration. (Agile/Continuous Integration)

6. We work on feature branches, which we integrate into the main line only

periodically. (Agile/Continuous Integration)

7. Code quality is consistent and high enough that we can release at any given

moment. (CN/Continuous Delivery)

8. Tech teams typically integrate and push new code to live production servers

every day. (CN/Continuous Delivery)

9. Emergency patches are just code changes like any other, no big deal.

(CN/Continuous Delivery into Next/Continuous Deployment)

10. When a developer checks in code, it goes directly into production.

(Next/Continuous Deployment)

7. DELIVERY

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

DELIVERY
Irregular
releases

Periodic
releases

Continuous
Integration

Config. management

Continuous
Delivery

Orchestration

Continuous
Deployment

container-solutions.com

13

How does your organisation create and then control new infrastructure? How
quickly can you deploy?

In our company …

1. We set everything up manually and then run it ourselves too. (No process/

Manual)

2. Operations team is in charge of provisioning, period. (Waterfall/Scripted)

3. Developers write applications, and specify what they will need to run

successfully in production (OS, libraries, dependent tools). (Waterfall/

Scripted)

4. The Ops team manually configures the production machines to meet the

machine dependencies the Dev team specified. (Waterfall/Scripted)

5. We might have a few scripts to help with config. (Waterfall/Scripted

into Agile)

6. It takes hours or days to provision a machine, which is fully automated

(maybe even auto provisioned) by Ops. (Agile/Config Management)

7. Provisioning is a mix of automation and manual work. (Agile/Config

Management)

8. Developers write, and test, containerised applications. (CN/Orchestration)

9. We use an orchestrator, like Kubernetes, to automatically spin up and run

containerised applications as needed. (CN/Orchestration)

10. Data centers are so last decade! We do our data processing on the edge!

(Next/Serverlesscomputing)

8. PROVISIONING

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

PROVISIONING Manual Scripted
Config. management

(Puppet/Chef/Ansible)
Orchestration
(Kubernetes) Serverless

Containers/

container-solutions.com

14

Your Infrastructure describes the physical servers or instances that your
production environment consists of: what they are, where they are, and how
they are managed.

In our company …

1. Everything pretty much runs on one single server ... which may or may not be

under somebody’s desk. (No Process/Single Server)

2. We have multiple physical servers in our own private data center (either on

premises or co-located). (Waterfall/Multiple servers)

3. If one of our servers goes down, we have to manually provision its

replacement. (Waterfall/Multiple servers)

4. We don’t use physical servers—we have VMs. (Agile/VMs)

5. Provisioning infrastructure is a mix of automation and manual work, so a

new VM can take a couple of days to set up. (Agile/VMs)

6. We also have some instances in the cloud, which we manage manually.

(Agile/VMs into CN/Containers & Hybrid cloud)

7. Our infrastructure is fully automated and we can provision in seconds. (CN/

Containers & Hybrid Cloud)

8. We use a managed solution from our public cloud provider and trust them to

handle the infrastructure’s finer details. (CN/Containers & Hybrid Cloud)

9. Our engineers and developers can fully self-service infrastructure on their

own. (CN/Containers & Hybrid Cloud)

9. INFRASTRUCTURE

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

INFRASTRUCTURE Single server Multiple servers VMs (pets)
Containers/

hybrid cloud (cattle) Edge computing

container-solutions.com

15

DRAW YOUR LINE

Use your answers from each of the individual axis questions on the previous pages to
draw a point on each of the nine separate areas on the full Maturity Matrix chart.
If you chose more than one answer for a particular axis, mark each one in the
appropriate spot. Now literally connect the dots by drawing a line through the status
point marked on each axis.

If you have more than one point on a particular axis, please draw the line through the
one you feel best fits your situation. (When in doubt, choose the one lying farthest to
the left).

Remember our sample matrix showing real-world results from an enterprise’s Cloud
Native assessment?

It shows a company that is functioning largely in a traditional Waterfall hierarchy,
especially in the Team, Design, Provisioning and Infrastructure areas.
Culture, however has progressed somewhat and is starting to move toward Agile;
less predictive, more iterative.

Perhaps this was in response to advances in their Process and Architecture, which
have nearly reached Agile state: we would gauge from this that they are using Scrum
sprints to deliver more frequently.

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

CULTURE

PROD/SERVICE
DESIGN

TEAM

PROCESS

ARCHITECTURE

MAINTENANCE

DELIVERY

PROVISIONING

INFRASTRUCTURE

Individualist

Arbitrary

Random

Emerging from
trial and error

No organisation,
single contributor

Predictive

Long-term plan

Hierarchy

Waterfall

Tightly coupled
monolith

Iterative

Feature driven

Cross-functional
teams

Agile
(Scrum/Kanban)

Client server

Collaborative

Data driven

DevOps / SRE

Design Thinking +
Agile + Lean

Microservices

Experimental

All driven

Internal supply
chains

Distributed,
self-organised

Functions

Respond to
users complaints

Irregular
releases

Manual

Ad-hoc
monitoring

Periodic
releases

Scripted

Alerting

Continuous
Integration

Config. management
(Puppet/Chef/Ansible)

Full observability &
self-healing

Continuous
Delivery

Orchestration
(Kubernetes)

Preventive ML,
AI

Continuous
Deployment

Serverless

Single server Multiple servers VMs (pets)
Containers/

hybrid cloud (cattle) Edge computing

container-solutions.com

16

Stage NO PROCESS WATERFALL AGILE CLOUD NATIVE NEXT

CULTURE

PROD/SERVICE
DESIGN

TEAM

PROCESS

ARCHITECTURE

MAINTENANCE

DELIVERY

PROVISIONING

INFRASTRUCTURE

Individualist

Arbitrary

Random

Emerging from
trial and error

No organisation,
single contributor

Predictive

Long-term plan

Hierarchy

Waterfall

Tightly coupled
monolith

Iterative

Feature driven

Cross-functional
teams

Agile
(Scrum/Kanban)

Client server

Collaborative

Data driven

DevOps / SRE

Design Thinking +
Agile + Lean

Microservices

Experimental

All driven

Internal supply
chains

Distributed,
self-organised

Functions

Respond to
users complaints

Irregular
releases

Manual

Ad-hoc
monitoring

Periodic
releases

Scripted

Alerting

Continuous
Integration

Config. management
(Puppet/Chef/Ansible)

Full observability &
self-healing

Continuous
Delivery

Orchestration
(Kubernetes)

Preventive ML,
AI

Continuous
Deployment

Serverless

Single server Multiple servers VMs (pets)
Containers/

hybrid cloud (cattle) Edge computing

CLOUD NATIVE MATURITY MATRIX

WATERFALL VS.
AGILE QUESTIONS

Cloud Native Maturity Matrix Questionnaire
Part 2:

container-solutions.com

18

WATERFALL VS. AGILE

There is a great deal of talk about the crucial role culture plays in Cloud Native. But
what does that really mean, and why is it so important?

Culture is the sum of the daily actions that you take. Your routines. If you talk to
people you have collaborative culture. Needing to seek permission before trying
something new means you have hierarchical culture. If you change the actions, you
change the culture.

You can’t have Cloud Native culture but not have Microservices—if it takes you
six months to deliver, you can’t be distributed. Can you do DevOps in a Waterfall
organisation? Sure. On the Dev side you can apply Cloud Native practices to
optimise and accelerate your development process. Meanwhile on the Ops side
you can automate deployment to make your provisioning and infrastructure
faster and more efficient than ever before. This is all great ... except for the
fact that your beautiful containerised microservices and their state-of-the-
art platform won’t actually get in front of users until the next release cycle is
completed, many months from now. All that speed and efficiency? Simply wasted.
Yes, you are doing CN right—from inside Waterfall.

Cloud Native is not automatically the ‘right’ solution, and having a Waterfall culture
is not necessarily wrong or ‘bad.’ There are times when Waterfall is absolutely the
best process for the situation at hand. Agile, too, has circumstances where it is the
optimal choice. The problem comes when the wrong solution gets applied—or a
combination of solutions that conflict, undermine, and ultimately gridlock each
other.

This is why culture matters. And why understanding your own organisational culture
is critical for functioning well in the world—i.e., succeeding as a business.

The first step in understanding these forces that shape your organisation is to
examine the actions that define your day-to-day operation: Know Thyself. Since the
vast majority of software is built using Waterfall and/or Agile practices, we have
developed two additional batteries of questions investigating how your organisation
functions in different areas. The answers indicate the most likely culture alignment.

container-solutions.com

19

Please answer Agree, Disagree, or Neutral/Not Applicable for each
statement.

In our company …

1. We release large sets of related features all at once as comprehensive

updates.

2. We know the next step in our process and when it is going to happen.

3. I know who my boss is, and my boss’s boss.

4. Documentation is a priority because that is how other teams (and

managers) know what we are doing.

5. Specialist teams handle specific areas: design, architecture, security,

testing, etc.

6. We often talk in JIRA issue numbers.

7. Our system is so complex that very few people understand the entire

thing.

8. Once we release a software version all changes have to wait for the

next version roll out months, or even a year, from now.

9. We don’t like to make changes to our production code, even

emergency ones, because there are so many dependencies. Change is

risky.

10. We have lots of planning sessions with other teams.

11. Business analysts play a big role in our software-delivery process.

12. We do ‘big bang’ releases that roll lots of changes into one new

version.

13. We increase quality by building abundant time for testing into the

build process.

14. You have to open a ticket to provision a machine, engineers can’t

self-service.

15. Developers write applications, and specify what they will need to run

successfully in production (OS, libraries, dependent tools). Then the

Ops team configures the production machines to meet the machine

dependencies the Dev team specified.

16. We have multiple physical servers in our own private data center

(either on premises or co-located).

WATERFALL

Agree Neutral Disagree

container-solutions.com

20

AGILE

Please answer Agree, Disagree, or Neutral/Not Applicable for each
statement.

In our company …

1. Our releases are usually small-scale iterative changes to existing

features/services.

2. Our feature releases are regular—for example, ‘Release Feature X

in two months, Feature Y in four months and Feature Z in six

months’—with little or no deviation.

3. Our team communicates well internally, but we don’t talk to other

teams very much.

4. We run development as short-term, concentrated project ‘sprints’.

5. Inside of our teams, we have great mutual support and cameraderie.

6. We focus on moving fast.

7. Hard to do more than quick fixes when a bug or some other problem

pops up.

8. Our applications are divided into components that communicate

through networking.

9. Our individual teams each have very vertical and targeted

responsibilities—we handle exactly one slice of the pie (a single

component).

10. New functionality requests can usually be accommodated within a

few weeks.

11. Developers test and merge their changes every few days, but not

directly onto the production system.

12. We don’t use physical servers—we have VMs.

13. Any task taking longer than a week to provision to VM breaks the

production cycle, and so is a nonstarter.

14. Sometimes you can be a hero by responding fast and solving a crisis.

15. Our teams are cross-functional. For example we can have a designer,

a UI expert, testing, someone with server experience, all in one group.

16. There is not much point in interacting with customers because

too much time passes before we could give them whatever they’re

asking for.

Agree Neutral Disagree

container-solutions.com

21

Waterfall Results:

5-10 points indicates a likelihood of
strong Waterfall culture

1-4 points indicates areas of Waterfall
culture are likely present (Mixed culture,
such as Waterfall moving to Agile—you
may have Scrum, for example)

0 and below indicates high likelihood
Waterfall culture is not present

WATERFALL VS. AGILE ANSWER KEY

Agile Results:

5-10 points indicates a strong
likelihood of Agile culture

1-4 points indicates areas of Agile
culture are present; Mixed culture likely,
such as Agile with CN elements like MS
or CI/CD

0 and below indicates high likelihood
Agile culture is not present

Scoring: 1 point for Agree, 0 for Neutral/Not Applicable, -1 point for Disagree

container-solutions.com

22

CONGRATULATIONS

You have completed a simplified and abridged version of the same diagnostic tool
Container Solutions engineers use when we are called in for an assessment. (Ours
has many, many more questions, takes two days to fully administer, and includes
focus group and individual interviews for fact finding and maximum depth).

We hope you found the process helpful and maybe even enjoyable. But a word of
caution: this is meant to provide a very general top-level overview. Cloud migrations
are very complex (and expensive) undertakings. Please be sure to consult with
experts who have previously—and successfully—navigated the Cloud Native
transformation path

A good next step: book a Container Solutions Cloud Native Readiness Assessment.
Following our multi-day site visit we provide a full report of findings and a thorough
analysis.

Our co-founder and CEO Jamie Dobson promises, ‘You will never regret bringing us
in for a discovery. Investing in two days of organisational self discovery gives hugely
valuable insights into your company’s current situation. And, should you decide
to undertake a Cloud Native transformation, it will save you a lot of time—not to
mention a lot of money.’

A GLOSSARY OF
CLOUD NATIVE
TERMS

Cloud Native Maturity Matrix Questionnaire
Part 3:

container-solutions.com

24

A GLOSSARY
OF CLOUD NATIVE TERMS

AGILE: Agile methodology is a widely used approach to project management in
software development. It is based on using incremental, iterative work sequences
that are commonly known as sprints. Scrum is a subtype of agile methodology,
essentially a specific framework for agile software development.

CLOUD: Cloud computing, or ‘the cloud’ is a general term for delivering hosted
services over the internet (the name being inspired by the cloud icon often used
to represent the internet on diagrams/flowcharts). Cloud services are different
from traditional infrastructure and platform hosting because they are elastic (users
can utilise as much, or as little, service as they need at any given moment); sold
on demand (by the minute or the hour, rather than set contract allotment); and
fully managed by the provider (the consumer needs nothing but computer and
Internet access). Significant innovations in virtualisation and distributed computing
have accelerated interest in even smaller enterprises moving to cloud computing.
Public versus Private: public clouds like Google and Amazon Web Services sell
services to anyone, and all users share the same resource pool. A private cloud is a
proprietary network or data center, usually company-owned, with access limited to
specific entities.

CONFIGURATION MANAGEMENT: Specifically, the automation of server
configuration and management, using tools such as Ansible, Puppet,
Chef, or Terraform.

CONTAINERS: Containers are lightweight, standalone executable software
packages that include everything required to run an application: code, runtime,
system tools, libraries, and settings. They are a sort of ‘standard unit’ of software
that packages up the code with all its dependencies so it can run anywhere, in any
computing environment. You can think of them as scale-able and isolated VMs
in which you run your applications. You can link containers together, set security
policies, limit resource utilisation, and more.

CONTINUOUS INTEGRATION: Continuous Integration is a coding philosophy and
set of practices that drive development teams to implement small changes and
check in code to version control repositories frequently. The technical goal of CI is to
establish a consistent and automated way to build, package, and test applications.

container-solutions.com

25

CONTINUOUS DEVELOPMENT: Continuous Delivery starts where Continuous
Integration ends. CD automates the delivery of applications to selected
infrastructure environments. Most teams work with multiple environments outside
the production pipeline, such as development and testing environments, and CD
ensures there is an automated way to push code changes to them. CD automation
then performs any necessary service calls to web servers, databases, and executes
procedures when applications are deployed.

CI/CD: When integrated, CI/CD together make it possible to implement continuous
deployment where application changes run through the CI/CD pipeline; passing
builds get deployed directly to production environments. Teams practicing
continuous delivery elect to deploy to production on daily or even hourly schedules.

CROSS-FUNCTIONAL TEAMS: A cross-functional team is where members have
different skill sets and competencies, but are working collaboratively toward the
same goal. Team members have all competencies necessary for accomplishing the
work within the team—so there are no dependencies on others outside the team.
In software development this typically means front-end and back-end developers,
database and UX specialists, QA engineers, and any other role necessary for
producing the product/service.

CULTURE: How individuals within an organisation communicate and work with
each other. Culture is the sum of the daily actions that you take. Your routines.
If you talk to people you have collaborative culture. Needing to seek permission
before trying something new, you have hierarchical culture. If you change the
actions, you change the culture.

DATA-DRIVEN DESIGN: Data-driven design describes the practice of developing
or improving a product based on things you can measure. Metrics like site analytics,
carrying out A/B testing, or surveying users for feedback are all used to make design
decisions.

DESIGN THINKING: Design thinking is a human-centred approach to business
processes. It focuses on customer problems and challenges as the foundation to
producing products/services that satisfy their wants and needs.

container-solutions.com

26

DEVOPS: DevOps is both a culture and set of processes aimed at reducing the
division between software development and its actual operation. With DevOps,
the traditionally siloed Development and Operations teams work together as one
cohesive team (or, sometimes, two teams in tight collaboration). The approach
facilitates fast and seamless software development while optimising both
productivity and reliability. Regardless of organisational structure, companies
adopting the DevOps model create teams that embrace the entire development and
infrastructure lifecycle in their scope of responsibility. See: SRE.

GREENFIELD PROJECT: Greenfield deployment refers to building a complete
software development system where previously there was none. In Cloud Native
it means not just cloud-based infrastructure but also incorporates architecture,
design, process, and culture—basically, starting completely from scratch in every
possible area. The term comes from the construction industry, where greenfield
development refers to any project on pristine, previously undeveloped land.
Greenfield development is often viewed as advantageous because it is free from
constraints that can be imposed by a system’s existing networks/infrastructure or
other legacy elements.

MICROSERVICES: Microservices (microservice architecture) is an approach
to application development in which a large application is built as a suite of
modular components or services. Each service runs a unique process and usually
manages its own database. A service can generate alerts, log data, support UIs and
authentication, and perform various other tasks.
Microservices enable development teams to take a more decentralized (non-
hierarchical) approach to building software. Microservices enable each service to be
isolated, rebuilt, redeployed, and managed independently.

MONOLITH: ‘Monolith’ is used to describe a single-tiered software application
in which different components combine into a single program, launched from a
single platform. A monolithic application is self-contained, and independent from
other computing applications, its design based on a ‘batteries included’ philosophy
that makes the application responsible not just for one particular task, but can
perform every step needed to complete any function. Monolithic apps are huge and
complex, and therefore very slow to deliver changes/supdates. A typical monolith
development cycle is six months to one year.

container-solutions.com

27

ORCHESTRATION: Orchestration in general refers to the automated configuration,
coordination, and management of computer systems and software. In cloud
computing, it refers more specifically to Kubernetes, an open-source system
for automating the deployment, scaling, and management of containerized
applications. In Cloud Native, orchestration is all about managing the lifecycles
of containers, especially in large, dynamic environments. (Dev)Ops teams use
container orchestration to control and automate tasks such as the availability,
provisioning and deployment of containers, load balancing of containers across
infrastructure, and scaling up/down by adding/removing containers as needed. See
also: Containers.

SRE: SRE, which stands for SIte Reliability Engineering, evolved independently of the
DevOps movement but fits perfectly with it. SRE embodies the DevOps philosophy
and then takes it one step further to define an architecture for implementing them.
SRE offers a much more prescriptive way to measure and achieve reliability across
the full spectrum of DevOps responsibilities. DevOps is a philosophy; SRE is a set of
practices. SRE is typically the desired model in very large frameworks, like Google.

WATERFALL: The waterfall model of software development is based on a logical
progression of steps that form the software development life cycle (SDLC). One
follows after the other in strict order, much as a waterfall cascades down from top
to bottom. While more agile methodologies have arisen, causing the waterfall model
to decline in popularity, waterfall’s sequential process still contains advantages and
it remains a common design process in the industry.

