
Container
Solutions

Move Fast Without Breaking Everything

CLOUD NATIVECLOUD NATIVECLOUD NATIVE

ATTITUDEATTITUDEATTITUDE

The

Anne Currie

PART 1
Introduction to the

Major Concepts of Cloud Native

Anne Currie

ABOUT THIS BOOK/BLURB

This is a small book with a single purpose, to tell you all about Cloud

Native - what it is, what it’s for, who’s using it and why.

Go to any software conference and you’ll hear endless discussion

of containers, orchestrators and microservices. Why are they so

fashionable? Are there good reasons for using them? What are the

trade-offs and do you have to take a big bang approach to adoption? We

step back from the hype, summarize the key concepts, and interview

some of the enterprises who’ve adopted Cloud Native in production.

Take copies of this book and pass them around or just zoom in to

increase the text size and ask your colleagues to read over your shoulder.

Horizontal and vertical scaling are fully supported.

The only hard thing about this book is you can’t assume anyone else has

read it and the narrator is notoriously unreliable.

What did you think of this book? We’d love to hear from you with

feedback or if you need help with a Cloud Native project

email info@container-solutions.com

This book is available in PDF form from the Container Solutions website

at www.container-solutions.com

First published in Great Britain in 2017 by Container Solutions

Publishing, a division of Container Solutions Ltd.

Copyright © Anne Berger (nee Currie) and Container Solutions Ltd 2017

Chapter 7 “Distributed Systems Are Hard” first appeared in

The New Stack on 25 Aug 2017

Design by Remember to Play / www.remembertoplay.co

Anne Currie

Anne Currie has been in the software industry for
over 20 years working on everything from large
scale servers and distributed systems in the ‘90’s
to early ecommerce platforms in the 00’s to cutting
edge operational tech on the 10’s. She has regularly
written, spoken and consulted internationally. She
firmly believes in the importance of the technology
industry to society and fears that we often forget
how powerful we are. She is currently working with
Container Solutions.

ABOUT THE AUTHORS

Container Solutions

As experts in Cloud Native strategy and technology,
Container Solutions support their clients with
migrations to the cloud. Their unique approach starts
with understanding the specific customer needs.
Then, together with your team, they design and
implement custom solutions that last. Container
Solutions’ diverse team of experts is equipped with
a broad range of Cloud Native skills, with a focus on
distributed system development.
Container Solutions have global perspective and
their office locations include the Netherlands, United
Kingdom, Switzerland, Germany and Canada.

4

6

10

14

18

22

26

CONTENT

INTRO / WHAT ON EARTH IS CLOUD NATIVE?	

01 / THE CLOUD NATIVE QUEST

02 / DO CONTAINERS HAVE IT ALL WRAPPED UP?

03 / IS DYNAMIC MANAGEMENT THE PRIME MOVER?

04 / MICROSERVICES - THE KILLER HORDE?

05 / THE DREAM OF CONTINUOUS DELIVERY

5

WHAT ON EARTH IS CLOUD
NATIVE?

INTRO

According to the Cloud Native Computing Foundation
(CNCF) Cloud Native is about scale and resilience or
“distributed systems capable of scaling to tens of
thousands of self healing multi-tenant nodes” (1).

That sounds great for folk like Uber or Netflix who want
to hyperscale an existing product and control their
operating costs. But is a Cloud Native approach just
about power and scale? Is it of any use to enterprises of
more normal dimensions? What about folk that just want
to get new products and services to market faster, like
the UK’s Financial Times newspaper. Five years ago, they
were looking for an architectural approach that would
let them innovate more rapidly. Did Cloud Native deliver
speed for them?

Others, like my own startup Microscaling Systems,
wanted to create and test new business ideas without
large capital expenditure, starting small with minimal
costs. Was Cloud Native a way to reduce bills for us?

6

Why Does This Book Even Exist?

The Container Solutions team and I wanted to
understand what Cloud Native was actually
being used for, what it could deliver in reality and
what the tradeoffs and downsides were.

We interviewed a range of companies who
adopted a Cloud Native approach because
we wanted to understand what they learned.
Enterprises like the flight booking unicorn
Skyscanner, the international ecommerce retailer
ASOS and the global newspaper The Financial
Times. We’ve also built and operated systems
ourselves for well over 20 years and many of the
brand new ideas coming out of Cloud Native
seem oddly familiar.

This book is a distillation of what we gleaned
from our conversations with users, vendors,
hosting providers, journalists and researchers.

It made us ask ourselves,
“What the heck is Cloud Native? Is it a way
to move faster? A powerful way to scale? A
way to reduce operational costs or capital
expenditure?“

How can these different aims be achieved with
in one paradigm? Finally, is it good that Cloud
Native can potentially do so much or is
that a risk?

With everyone from the ordinary developer
to the CTO in mind, this book explores Cloud
Native’s multiple meanings and tries to cut
through the waffle to identify the right Cloud
Native strategy for specific needs. We argue that
moving fast, being scalable and reducing costs
are all achievable with a Cloud Native approach
but they need careful thought. Cloud Native has
huge potential, but it also has dangers.

Finally, we reflect on what Cloud Native really
means. Is it a system of rules or more of a frame
of mind? Is it the opposite of Waterfall or the
opposite of Agile? Or are those both utterly
meaningless questions?

INTRO
What on Earth is Cloud Native?

7

What is Cloud Native? Sounds Like Buzzwords

“Cloud Native” is the name of a particular
approach to designing, building and running
applications based on cloud (infrastructure-as-
a-service or platform-as-a-service) combined
with microservice architectures and the new
operational tools of continuous integration,
containers and orchestrators. The overall
objective is to improve speed, scalability and,
finally, margin.

Speed:
Companies of all sizes now see strategic
advantage in being able to move quickly and get
ideas to market fast. By this, we mean moving
from months to get an idea into production to
days or even hours. Part of achieving this is a
cultural shift within a business, transitioning
from big bang projects to more incremental
improvements. Part of it is about managing risk.
At its best, a Cloud Native approach is about de-
risking as well as accelerating change, allowing
companies to delegate more aggressively and
thus become more responsive.

Scale:
As businesses grow, it becomes strategically
necessary to support more users, in more

locations, with a broader range of devices, while
maintaining responsiveness, managing costs and
not falling over.

Margin:
In the new world of cloud infrastructure, a
strategic goal may be to pay for additional
resources only as they’re needed – as new
customers come online. Spending moves from
up-front CAPEX (buying new machines in
anticipation of success) to OPEX (paying for
additional servers on-demand). But this is not
all. Just because machines can be bought just
in time does not mean that they’re being used
efficiently [14]. Another stage in Cloud Native is
usually to spend less on hosting.
At its heart, a Cloud Native strategy is about
handling technical risk. In the past, our standard
approach to avoiding danger was to move slowly
and carefully. The Cloud Native approach is
about moving quickly by taking small, reversible
and low-risk steps. This can be extremely
powerful but it isn’t free and it isn’t easy. It’s a
huge philosophical and cultural shift as well as a
technical challenge.

INTRO
What on Earth is Cloud Native?

Speed Scale Margin

8

How Does Cloud Native Work?

The fundamentals of Cloud Native have been
described as container packaging, dynamic
management and a microservices-oriented
architecture, which all sounds like a lot of work.
What does it actually mean and is it worth the
effort?

We believe Cloud Native is actually all about five
architectural principles.

Use infrastructure or platform-as-a-service:
run on compute resources that can be flexibly
provisioned on demand like those provided by
AWS, Google Cloud, Rackspace or
Microsoft Azure.

Design systems using, or evolve them
towards, a microservices architecture:
individual components are small and decoupled.

Automate and encode: replace manual
tasks with scripts or code. For example, using
automated test suites, configuration tools and
CI/CD.

Containerize: package processes together with
their dependencies, making them easy to test,
move and deploy.

Orchestrate: abstract away individual servers
in production using off-the-shelf dynamic
management and orchestration tools.

These steps have many benefits, but ultimately

they are about the reduction of risk. Over a
decade ago in a small enterprise, I lay awake
at night wondering what was actually running
on the production servers, whether we could
reproduce them and how reliant we were on
individuals and their ability to cross a busy
street. Then, I’d worry about whether we’d
bought enough hardware for the current big
project. We saw these as our most unrecoverable
risks. Finally, I worried about new deployments
breaking the existing services, which were tied
together like a tin of spaghetti. That didn’t leave
much time for imaginative ideas about the future
(or sleep).

In that world before cloud, infrastructure-as-
code (scripted environment creation), automated
testing, containerization and microservices,
we had no choice but to move slowly, spending
lots of time on planning, on testing and on
documentation. That was absolutely the right
thing to do then to control technical risk.
However, the question now is “is moving slowly
our only option?” In fact, is it even the safest
option any more?

We’re not considering the Cloud Native approach
because it’s fashionable – although it is. We
have a pragmatic motivation: the approach
appears to work well with continuous delivery,
provide faster time to value, scale well and be
efficient to operate. Most importantly, it seems
to help reduce risk in a new way – by going fast,
but small. It’s that practical reasoning we’ll be
evaluating in the rest of this book.

INTRO
What on Earth is Cloud Native?

9

THE CLOUD NATIVE QUEST

In our introduction we defined Cloud Native as a set of
tools for helping with three potential objectives:

•	 Speed: faster delivery for products and features (aka
feature velocity or “Time To Value”).

•	 Scale: maintaining performance while serving more
users.

•	 Margin: minimizing infrastructure and people bills.

We also implied that Cloud Native strategies have a focus
on infrastructure.

•	 Start with a cloud (IaaS or PaaS) infrastructure.
•	 Leverage new architectural concepts that have

infrastructural impact (microservices).
•	 Use open source infrastructure tools (orchestrators

and containers).

We believe Cloud Native is a technique that marries
application architecture and operational architecture,
and that makes it particularly interesting.

In this chapter, we’re going to talk about the goals we’re
trying to achieve with CN: going faster, bigger and
cheaper.

01

10

The Goals of Speed, Scale & Margin

First of all, let’s define what we mean by these
objectives in this context. Right now, the most
common desire we’re seeing from businesses is
for speed. So that’s where we’ll start.

Speed
In the Cloud Native world we’re defining speed
as “Time to Value” or TTV – the elapsed clock
time between a valid idea being generated and
becoming a product or feature that users can see,
use and, hopefully, pay for. But value doesn’t only
mean revenue. For some start-ups, value may be
user numbers or votes. It’s whatever the business
chooses to care about.

We’ve used the phrase “clock time” to
differentiate between a feature that takes 3
person days to deliver but launches tomorrow
and a feature that takes 1 person day but
launches in 2 months time. The goal we’re
talking about here is how to launch sooner
rather than how to minimize engineer hours.

Scale
We all know you can deliver a prototype that
supports 100 users far more quickly, easily
and cheaply than a fully resilient product

supporting 100,000. Launching prototypes that
don’t scale well is a sensible approach when
you don’t yet know if a product or feature has
appeal. There’s no point in over-engineering it.
However, the point of launching prototypes is
to find a product that will eventually need to
support those 100,000 users and many more.
When this happens your problem becomes
scale – how to support more customers in
more locations whilst providing the same or
a better level of service. Ideally, we don’t want
to have to expensively and time-consumingly
rewrite products from scratch to handle success
(although, in some cases that’s the right call).

Margin
It’s very easy to spend money in the cloud.
That’s not always a bad thing. Many start-ups
and scale-ups rely on the fact that it’s fast
and straightforward to acquire more compute
resources just by getting out a credit card. That
wasn’t an option a decade ago.

However, the time eventually comes when folk
want to stop giving AWS, Microsoft or Google
a big chunk of their profits. At that point their
problem becomes how to maintain existing
speed and service levels whilst significantly
cutting operational costs.

01
The Cloud Native Quest

11

01
The Cloud Native Quest

What Type of Business Are You?

But before we jump into choosing an objective,
let’s consider that a goal is no use unless it’s
addressing a problem you actually have and that
different companies in different stages of their
development usually have different problems.

Throughout this book we’ll be talking about the
kinds of business that choose a Cloud Native
strategy. Every business is different, but to keep
things simple we’re going to generalize to three
company types that each represent a different
set of problems: the start-up, the scale-up and
the enterprise.

The start-up
A “start-up” in this context is any company that’s
experimenting with a business model and trying
to find the right combination of product, license,
customers and channels. A start-up is a business
in an exploratory phase – trying and discarding
new features and hopefully growing its
user base.

Avoiding risky up-front capital expenditure is
the first issue, but that’s fairly easily resolved by
building in the cloud. Next, speed of iteration
becomes their problem, trying various models as
rapidly as possible to see what works. Scale and
margin are not critical problems yet for
a start-up.

A start-up doesn’t have to be new. Groups within
a larger enterprises may act like start-ups when
they’re investigating new products and want to
learn quickly.

There’s an implication here that the business is
able to experiment with their business model.

That’s easy for internet products and much
harder for hardware or on-premise products.
For the “speed” aspect of Cloud Native we are
primarily describing benefits only available to
companies selling software they can update
at will. If you can’t update your end product,
continuous integration or delivery doesn’t buy
you as much, although it can still be of use.

The scale-up
A scale-up is a business that needs to grow fast
and have its systems grow alongside it. They
have to support more users in more geographic
regions on more devices. Suddenly their problem
is scale. They want size, resilience and response
times. Scale is not just about how many users
you can support. You might be able to handle
100X users if you accept falling over a lot but
I wouldn’t call that proper scaling. Similarly, if
you handle the users but your system becomes
terribly slow, that isn’t successful scaling either.
A scale-up wants more users, with the same or
better SLA and response times and doesn’t want
to massively increase the size of their operations
and support teams to achieve it.

The Enterprise
Finally, we have the grown-up business – the
enterprise. This company may have one or
many mature products at scale. They will still be
wrestling with speed and scale but margin is also
now a concern: how to grow their customer base
for existing products while remaining profitable.
They no longer want to move quickly or scale by
just throwing money at the problem.

They are worried about their overall hosting bills
and their cost per user. Being big, resilient and
fast is no longer enough. They also want to be
cost effective.

12

Where to Start?

It’s a good idea to pursue any wide-ranging
objective like speed, scale or margin in small
steps with clear wins.

For example, pursue faster feature delivery for
one product first. Then, when you are happy with
your progress and delivery, apply what you’ve
learned to other products.

It’s a dangerous idea to pursue multiple
objectives of Cloud Native simultaneously.
It’s too hard. Every Cloud Native project is
challenging and, as we’ll read in our case studies,
it requires focus and commitment. Don’t fight a
war on more than one front.

Your objectives don’t have to be extreme.
Company A might be happy to decrease their
deployment time from 3 months to 3 days. For
Company B, their objective will only be achieved
when the deployment time is 3 hours or even
3 minutes. Neither Company A or Company B
is wrong – as long as they’ve chosen the right
target for their own business.

When it comes to “define your goal” the
operative word is “your”.

So, if you’re searching for product fit you are
in “start-up” mode and are probably most
interested in speed of iteration and feature
velocity. If you have a product that needs to
support many more users you may be in “scale-
up” mode and you’re interested in handling more
requests from new locations whilst maintaining
availability and response times. Finally, if you are
now looking to maximize your profitability you
are in “enterprise” mode and you’re interested
in cutting your hosting and operational costs
without losing any of the speed and scalability
benefits you’ve already accrued.

OK, that all sounds reasonable! In the next
chapter we are going to start looking at the tools
we can use to get there.

01
The Cloud Native Quest

13

DO CONTAINERS HAVE IT
ALL WRAPPED UP?

In the last chapter we described the Cloud Native goals
of speed, scale and margin, or going faster, bigger and
cheaper. Next we’re going to look at some of the tools
that Cloud Native uses to tackle these goals, including
container packaging, dynamic management and a
microservices-oriented architecture.

In this chapter we’ll consider container packaging – what
it is and the effect it has. But first, let’s take a big step
back. What are we running on?

02

14

IaaS, PaaS or Own Data Centre?

Before we start talking about software and tools,
a good question is where is all this stuff running?
Does Cloud Native have to be in the cloud?

Crucially, does a Cloud Native strategy have
to use infrastructure-as-a-service (IaaS) or
platform-as-a-service (PaaS) with the physical
machines owned and managed by a supplier like
Microsoft, Google or AWS? Or could we build our
own servers and infrastructure?

We’d argue that Cloud Native strategies
fundamentally exploit the risk-reduction
advantages of IaaS or PaaS:

•	 Very fast access to flexible, virtual resources
(expand or contract your estate at will). This
changes infrastructure planning from high to
low risk.

•	 Lower cost of entry and exit for projects.
The transition from CAPEX (buying a lot of
machines up front) to OPEX (hiring them
short term as needed) de-risks project
strategy by minimizing sunk costs and
making course corrections or full strategy
shifts easier.

•	 Access to cloud-hosted, managed services
like databases-as-a-service, load balancers
and firewalls as well as specialist services
like data analytics or machine learning
makes it faster and easier to develop more
sophisticated new products. This can help
identify opportunities more quickly and
reduce the risk of experimentation.

These advantages can potentially be duplicated
by a large organization in their own data centers
– Google, Facebook and others have done
so. However, it is difficult, distracting, time-
consuming and costly. Therefore, it’s a risky

process. For many enterprises it’s more efficient
to buy these IaaS/PaaS advantages off-the-shelf
from a cloud provider. If you have a tech team
who are smart enough to build a private cloud as
well as Google or AWS then is that the best way
for your business to use them?

So, Cloud Native systems don’t have to run in
the cloud but Cloud Native does have tough
prerequisites that are already met by many
cloud providers, increasingly commoditized,
and difficult to build internally. To be honest, I’d
probably use the cloud unless I was Facebook.

Containers! They’re so Hot!

In the Cloud Native vision, applications are
supplied, deployed and run in something called a
“container”. A container is just the word we use
to describe cleverly wrapping up all the processes
and libraries we need to run a particular
application into a single package and putting
an interface on it to help us move it about. The
original and most popular tool for creating these
containerized applications was Docker.

Containers are so hot because
containerization accomplished three
incredibly sensible things.

02
Do Containers Have it all Wrapped Up?

15

A Standard Packaging Format – Docker
invented a simple and popular packaging
format that wrapped an application and all
its dependencies into a single blob and was
consistent across all operating systems. This
common format encouraged other companies
and tons of startups to develop new tools
for creating, scanning and manipulating
containerized applications. Docker’s format is
now the de-facto standard for containerized
application packaging. Docker’s containerized
application packages or “images” are used
on most operating systems with a wide set
of build, deployment and operational tools
from a variety of vendors. The image format
and its implementation are both open source.
In addition, Docker’s container images are
“immutable” – once they are running you cannot
change or patch them. That also turns out to be a
very handy feature from a security perspective.

Lightweight Application Isolation Without a
VM – A “container engine” like Docker’s Engine
or CoreOS’s rkt is required to run a containerized
application package (aka an “image”) on a
machine. However, an engine does more than
just unpack and execute packaged processes.
When a container engine runs an application
image, it limits what the running app can see
and do on the machine. A container engine can
ensure that applications don’t interfere with
one another by overwriting vital libraries or by
competing for resources. The engine also allows
different versions of the same library to be used
by different containers on the host.
A running containerized application behaves a
bit like an app running in a very simple virtual
machine but it is not – the isolation is applied
by the container engine process but enforced
directly by the host kernel. A container image
once running is referred to as just a “container”
and it is transient – unlike a VM, a container

only exists while it is executing (after all it’s
just a process with some additional limitations
being enforced by the kernel). Also, unlike a
heavyweight VM a container can start and stop
very quickly – in seconds. We call this potential
for quick creation and destruction of containers
“fast instantiation” and it is fundamental to
dynamic management.

A Standard Application Control Interface
Just as importantly, a container engine also
provides a standard interface for controlling
running containers. This means third-party tools
can start and stop containerized applications
or change the resources assigned to them. The
concept of a common control interface for any
application running on any operating system is
surprisingly radical and is, again, vital to dynamic
management.

Together, these 3 revolutionary innovations
have changed our assumptions about how data
centers can be operated and about how rapidly
new applications can be deployed.

Alternatives to Containers

Now that these concepts of standardized
application packaging, isolation and control
are out there, we’re already seeing alternative
approaches being developed that provide some
of the same functionality. For example:
•	 Serverless or function-as-a-service products

like AWS Lambda (cloud services that
execute user-defined code snippets on
request).

•	 Unikernels and their ilk (potentially self-
sufficient application packages that also
include the minimum required host operating
system).

•	 Applications inside new lighter-weight VMs.

02
Do Containers Have it all Wrapped Up?

16

 In addition, other container types to Docker
exist and even more ways to achieve the benefits
of containers will undoubtedly be developed.
However, what’s important is understanding
the advantages of common packaging,
control interfaces, and application isolation
even if in 5 years we end up using something
other than containers to provide these features.

ASIDE – To avoid confusion, although the
interface for managing Docker images is
consistent across all operating systems, the
contents of the image are not necessarily
portable. The contents of a container image are
a set of executables. A Linux container image
will only include executables compiled to run
on Linux. A Windows image will only include
exes and dlls compiled to run on Windows. You
therefore cannot run a Linux container image
on Windows or a Windows container image on
Linux any more than you can run an executable
compiled for one on the other. However, once
the containers are running on the right host OS
you can control them all with the same format of
API calls. Remember – the container engine is not
a runtime environment like Java. Containers run
natively on the host so the executables must be
compiled for that OS.

 Is a Container As Good As a VM?
Before we get too carried away, there are still

ways a VM is better than a container. On the
downside:
•	 a VM is more massive than a container
•	 a VM consumes more host machine

resources to run than a container
•	 VMs take much longer to start and stop

(minutes vs seconds).

In the VM’s favour, however, it is a much more
mature technology with years of tooling behind
it. Also, containers isolate processes, but
they don’t do it perfectly yet – especially for
antagonistic applications. The VM’s heavyweight
approach is currently more secure.

Why is Everyone Mad About Containers
Anyway?

The reason everyone’s going crazy about
containers is not just because they are a nice
packaging format that plays well with automated
deployments. Containers also provide us with
lightweight application isolation and a standard
application control API. Paired with dynamic
management that can give us automation,
resilience and much better resource
utilization, making containers potentially
greener and cheaper. But more on that in the
next chapter.

02
Do Containers Have it all Wrapped Up?

vs.

17

IS DYNAMIC MANAGEMENT
THE PRIME MOVER?

Dynamic infrastructure management is sometimes
described as programmable infrastructure and its
purpose is to automate data centre tasks currently done
by ops folk. This potentially has multiple benefits.

•	 Improved ops team productivity.
•	 Systems that can react faster and more consistently

to failure or attack and are therefore more resilient.
•	 Systems that can have more component parts (e.g. be

bigger)
•	 Systems that can manage their resources more

efficiently and therefore be cheaper to operate.

Dynamic management relies on a brand new kind of
operational tool called a container orchestrator.

03

18

What is an Orchestrator?

According to Wikipedia, “Orchestration is the
automated arrangement, coordination, and
management of computer systems” [2].

Orchestration tools have been around a long
time for controlling virtual machines (VMs)
running on physical servers. VM orchestrators
underpin the modern cloud – they allow cloud
providers to pack many VMs efficiently onto
huge servers and manage them there. Without
that, operating the cloud would cost too much.
However, container orchestrators can do even
more than VM orchestrators.

Container Orchestrators

New container orchestrators like Kubernetes,
DC/OS, Nomad or Swarm remotely control
containers running on any machine within a
defined set called a cluster. Amongst other
things, these orchestrators dynamically manage
the cluster to automatically spot and restart
failed applications (aka fault tolerance) and

ensure the resources of the cluster are being
used efficiently (aka bin packing).

The basic idea of any orchestrator (VM or
container) is that we puny humans don’t need to
control individual machines, we can just set high
level directives and let the orchestrator worry
about what’s happening on any particular server.

We mentioned in the last chapter that containers
are lightweight compared to VMs and highly
transient (they may only exist for seconds or
minutes). We are already dependent on VM
orchestrators to operate virtualized data centres
because there are so many VMs. Within a
containerized data centre there will be orders
of magnitude more containers. Google, one of
the earliest users of container technology in
production, start over two billion containers
every week [3]. Most of us are not going to
do that (!), but if we don’t operate way more
containers than we currently do VMs then we’re
missing out. Container orchestrators will almost
certainly be required to manage these greater
numbers effectively.

03
Is Dynamic Management The Prime Mover?

19

Is Dynamic Management Just Orchestration?

Right now, dynamic management is mostly what
we can do out-of-the box with orchestrators
(better resource utilization and automated
resilience) although even that entry-level
functionality is extremely useful.

However, orchestrators also let third parties
write tools to control the containers under the
orchestrator’s management. In future, these
tools will do even more useful things like
improve security and energy consumption. We
know of at least one small company who has
cut some hosting bills by 70% using a container
orchestrator and their own custom tools in
production [4].

Automation

The purpose of dynamic management is to
automate data centres. We can do that with
container orchestrators because of our 3
revolutionary features of containers:
•	 a standard application packaging format
•	 a lightweight application isolation

mechanism
•	 a standard application control interface.

We have never had these features before in a
commonly adopted form (Docker-compatible
containers in this case) but with them we can
quickly, safely and programmatically move
applications from place to place and co-locate
them. Data centres can be operated:

•	 at greater scale
•	 more efficiently (in terms of resources)
•	 more productively (in terms of manpower)
•	 more securely
 Orchestrators play a key role in delivering
the Cloud Native goals of scale and margin,
but can also be useful in helping to automate
deployment, which can improve feature velocity
or speed.

Sounds Marvellous. Is There a Catch?

As we’ve discussed, dynamic management relies
on container features like very fast instantiation
speeds – seconds or sub-seconds compared to
minutes for VMs. The problem is lots of tools
designed for working with applications running
in VMs do not yet respond quickly enough to
handle dynamically managed containers. Many
firewalls and load balancers cannot handle
applications that appear and disappear in
seconds. The same is true of service discovery,
logging and monitoring services. I/O operations
can also be a problem for extremely short-lived
processes.

These issues are being addressed by new
products that are much more container-friendly,
but companies may have to move away from
some old familiar tools to newer ones to be
able to use dynamic management. It also might
make sense in a container world to hold state in
managed stateful services like Databases-as-a-
Service rather than to battle the requirements of
fast I/O.

03
Is Dynamic Management The Prime Mover?

20

Which Came First, The Container or the
Orchestrator?

Companies that start by running containers
in production often then move on to using
orchestrators because they can save so much
hosting money. Many early container adopters
like The Financial Times or the cloud hosting
provider Cloud66 (who you’ll hear more about
later) initially wrote their own orchestrators

but are now adopting off-the-shelf versions
like Kubernetes as those commercial products
become more mature.

So is the first step in a Cloud Native strategy
always to adopt containers, quickly followed by
orchestrators? Actually not necessarily. Many
companies start first with microservices, as we’ll
see in our next chapter.

03
Is Dynamic Management The Prime Mover?

21

MICROSERVICES - THE
KILLER HORDE?

In the last chapters, we talked about two of the
architectural and operational weapons of Cloud Native:
containers & dynamic management. However, when I go
out and speak to experienced Cloud Native users I find
that containers and orchestrators aren’t always where
they started. Many companies begin with microservices
and don’t adopt containers until later.

In this chapter we are going to look at “microservices-
oriented architectures” and think about how they fit in
with the other Cloud Native tools.

04

22

Microservices Architectures

The microservice concept is a deceptively simple
one. Complex, multi-purpose applications
(aka monoliths) are broken down into small,
single-purpose and self-contained services
that are decoupled and communicate with
one another via well-defined messages.

In theory, the motivation is threefold –
microservices are potentially:
•	 Easier to develop and update.
•	 More robust and scalable.
•	 Cheaper to operate and support.

However, these benefits are not trivial to deliver.
How to architect microservices is a difficult
thing to get your head around. Microservices
can achieve several competing objectives and
it’s very important that you think carefully about
what your initial goal is or you could end up with
a mess.

Let’s Talk About State

Let’s briefly step back and discuss something
that often comes up when we’re talking about
microservices. State.
There are broadly two types of microservice:

“stateless” and “stateful”.

 Stateful microservices possess saved data
in a database that they read from and write
to directly. Note that well-behaved stateful
microservices don’t tend to share databases
with other microservices because that makes it
hard to maintain decoupling and well-defined
interfaces. When a stateful service terminates it
has to save its state.

Stateless microservices don’t save anything.
They handle requests and return responses.
Everything they need to know is supplied on
the request and once the request is complete
they forget it. They don’t keep any permanent
notes to remind them where they got to. When
a stateless service terminates it has nothing to
save. It may not complete a request but - c’est la
vie – that’s the caller’s problem.

The Point of Microservices

In an earlier chapter we discussed how Cloud
Native has three potential goals: speed (i.e.
feature velocity or time to value), scale and
margin. To optimize for each of these you might
design your microservice architecture differently.

04
Microservices - The Killer Horde?

23

Microservices for Speed (Feature Velocity)
A very common motivation for moving to a
microservices architecture is to make life easier
for your tech teams. If you have a large team all
working on the same big codebase then that can
cause clashes and merge conflicts and there’s
a lot of code for everyone to grok. So it would
instantly seem easier if every service was smaller
and separated by a clear interface. That way
each microservice can be owned by a small team
who’ll all work together happily so long as they
like the same two pizza toppings. Teams can
then safely deploy changes at will without having
to even talk to those four cheeses down the hall
– as long as no fool changes the API….

Microservices for Scale
In the very olden days you would spend $5M on
a mainframe and it would run for 10 years with
no downtime (in fact, IBM see the market for
mainframes lasting another 30 years for some
users!) Mainframes are the classic example
of vertical scaling with all its strengths and
weaknesses. I don’t want a mainframe for many
reasons, but three particularly leap to mind:
•	 any one machine will eventually run out of

capacity
•	 a single machine can only be in one place – it

can’t provide fast response times for users all
over the world

•	 I have better things to do with my spare
bedroom.

If I want to scale forever or I have geographically
dispersed users, I may prefer to architect for
horizontal scaling, i.e. lots of distributed small
machines rather than one big one.
Basically, for horizontal scaling I want to be
able to start more copies of my application to
support more users. The self-contained nature of
microservices works well with this. An individual
instance of a microservice is generally decoupled

not only from other microservices but also from
other instances of itself, so you can safely start
lots and lots of copies. That effectively gives you
instant horizontal scaling. How cool is that?
 Actually it gets cooler. If you have lots of copies
of your application running for scale that can
also provide resilience – if one falls over you just
start up another. You can even automate this if
you put your application in a container and then
use an orchestrator to provide fault tolerance.
Automating resilience is a good example of
where microservices, containers and dynamic
management work particularly well together.

Microservices for Margin
Switching to a more modern example, if my
monolithic application is running out of memory
on my giant cloud instance then I have to buy a
bigger instance, even if I’m hardly using any CPU.
However, if my memory-intensive function was
split out into its own microservice, I could scale
that independently and possibly use a more
specialized machine type for hosting it. A flexible
microservices architecture can give you more
hosting options, which generally cuts your costs.

What’s The Catch?

If this all sounds too good to be true, it kind of
is. Microservices architectures can be really,
really complex to manage. Distributed
systems have ways of failing that you’ve
never thought of before.

The dilemma is if you want your system to be
easy for your developers, you can architect
your microservices for that. Your architecture
will probably involve a lot of asynchronous
external queues (stateful services) to minimize
unpredictable data loss and it will be expensive
to host and relatively slow to run,

04
Microservices - The Killer Horde?

24

but it will be robust and easier to develop on and
support. Don’t knock that!

However, if you want your system to be
hyperscale, hyperfast and cheap then you will
have to handle more complex distributed failure
modes, which we’ll talk about in a later chapter.
In the short term, it will be more difficult for your
developers and they’ll have lots to learn.

So you have an initial decision to make. Do you
start with feature velocity and ease or with scale
and margin? It’s absolutely sensible to start easy
and add incremental complexity as you gain
familiarity and expertise.

In our experience, folk tend to use more than one
approach but everyone starts with something
relatively straightforward if they want to be
successful. In the longer term, some services will
need to be hyperfast and some just won’t.

Microservice vs Monolith

Not all application architectures fully benefit
from a Cloud Native approach. For example,
stopping a container fast, which is important
to dynamic management, only works if the
application inside the container is happy to be
stopped quickly. This may not be true if the
app is maintaining lots of information about its

internal state that needs to be saved when the
process terminates. Saving state is slow.

Lots of older applications maintain state because
that was how we used to architect things – as
big, multi-purpose “monoliths” that were slow to
stop and start. We often still architect that way
because it has many benefits. It just happens not
to work so well with some aspects of dynamic
management.

If you have a monolith there are still advantages
to a Cloud Native approach, but Cloud Native
works optimally for scalability and resilience with
a system of small, independent microservices
that are quick to stop and start and that
communicate with one another via clear
interfaces. The scaling and resilience advantages
of containers and orchestrators exist whether
you have gone for an easy-but-expensive
microservice architecture or a hyperscale-and-
hyperfast one or even somewhere in between,
which is where most folks are.

So there are clear speed, scale, productivity,
resilience and cost advantages to using
microservices, containers and dynamic
management. And they all work even better
together! Great! But what about continuous
delivery? Is that required too? We seem to have
forgotten about that.

04
Microservices - The Killer Horde?

vs.

25

THE DREAM OF
CONTINUOUS DELIVERY

In the CNCF description of Cloud Native as “container
packaging, dynamic management and a microservices-
oriented architecture” there is no mention of continuous
integration (CI) or continuous delivery (CD). However,
they are both present in every successful Cloud Native
setup that we’ve seen. Present and vital.

So this chapter is devoted to the philosophy behind CI/
CD. Why do we want it, why is it so hard to achieve and
how did we tackle it in the past? Finally, we’ll ponder how
we tackle it in a Cloud Native environment.

05

26

Is Faster Really Better?

There’s huge variation between companies in
the elapsed time taken for a new product idea
to appear in front of users. For some folk it’s
months. For others it’s hours or minutes. Some
marketing teams can have a wild thought at 9
a.m. and see it in production that afternoon.
Others have given up having wild thoughts.

The route followed by the speedier companies
to achieve this velocity has not been easy. It
has usually taken several years and they’ve
progressed gradually from cloud to continuous
delivery to microservices, containers and
orchestration. But, before we look into all that
let’s step back. What’s so good about fast?

The Need for Speed

It’s still not unusual for a tech team to have a
planned feature roadmap of 18+ months. Hot
concepts from dev, marketing or the executives
go to a slow heat-death at the end of the
roadmap. By the time these experiments are
implemented the business has gone completely
cold on the whole thing.

Why is it all so slow? Do all changes take months
to implement? Often no, some might be a
few day’s work. Are dev and ops deliberately
obstructive? Usually not, an 18 month roadmap
is as frustrating to techies as it is to everyone
else. Contrary to popular belief, we are humans
too.
In fact, there are several things that cause
slowness.

Mega-Projects

Big mega-projects like ERP implementations can
take up all the time, brain cycles and will to live
of a tech team for months or years. They have
few natural break points or early ROI milestones
and they have a very long time to value.

Unfortunately, teams involved in mega-projects
with a high-risk, single delivery milestone in
12 months are unlikely to benefit from a Cloud
Native approach to speed. To go fully Cloud
Native, we need to be able to deploy small,
discrete units of value. Sometimes mega-
projects are unavoidable, but they are not what
this book is about. I wish you the best of luck.

Manual Tasks and Handover

If even small tasks within your tech organization
require manual processes or, even worse, high-
friction handovers between multiple parties then
considerable cost and elapsed time is added
to every project. For example, the developer
who writes the code may have to wait days for
their comrade on the ops team to provide a test
environment.

Multiple handovers can easily delay deployment
by weeks. This is an area where a Cloud Native
strategy could help by automating or simplifying
some of the handover processes to reduce
friction.

05
The Dream of Continuous Delivery

REFERENCES

1 - Cloud Native Computing Foundation charter

https://www.cncf.io/about/charter/ The Linux

Foundation, November 2015

2 - Wikipedia, https://en.wikipedia.org/wiki/

Orchestration_(computing) September 2016

3 - The Register ‘EVERYTHING at Google runs in a

container’ https://www.theregister.co.uk/2014/05/23/

google_containerization_two_billion/ May 2014

4 - Ross Fairbanks Microscaling Systems Use

Kubernetes in Production https://medium.com/

microscaling-systems/microscaling-microbadger-

8cba7083e2a February 2017

www.container-solutions.com

DOWNLOAD E-BOOK

Container
Solutions

Move Fast Without Breaking Everything

CLOUD NATIVECLOUD NATIVECLOUD NATIVE

ATTITUDEATTITUDEATTITUDE

The

Anne Currie
PART 2

Next Steps With Cloud Native

http://info.container-solutions.com/next-steps-with-cloud-native?utm_campaign=KubeCon%202018&utm_medium=email&_hsenc=p2ANqtz-9chpO4Iolubnf1Bu5bQNv1yh4I0Cf5_VdpLTmuzOIQrZsh8xXSjIXnmAWYEyr4JCdAHBJYGseZBONvqUAtxfUAUXIRaLk7-ElXbjw7F8-3tGvC-BU&_hsmi=2&utm_content=2&utm_source=hs_email&hsCtaTracking=4f864a1e-0eab-4586-a7d9-cbb47fd64953%7C236b2e2a-d979-4c3f-8c7a-08751a5a9901

